喜多方市の土蔵造建造物の構造調査と大壁の性能確認実験

2.構造-7.木質構造

土蔵造建造物 大壁 常時微動計測

対角圧縮試験 曲げ試験 復元力特性

1. 背景と目的

我国には、伝統的な建物や街並みを文化財として一体 的に保存し整備するための「重要伝統的建造物保存地区」 (以下、重伝建地区と呼ぶ。)という制度が存在する。重 伝建地区には、市町村により定められる「伝統的建造物群 保存地区」(以下、伝建地区と呼ぶ。)から、国に特に価値 が高いと判断された地区が選ばれる。福島県喜多方市小 田付地区については、在郷・醸造町として発展した蔵の街 並みを対象として 2018 年 3 年に喜多方市により伝建地区 に、同年 8 月に重伝建地区に選定された。

地区全体を保護するにあたり、対象建物の多さと密集 性から耐震対策の必要性は高く、地震時の建物の損害を 抑えるために、耐震補強などの対策を講じ、建物の安全性 確保に繋げることが重要である。特にこの種の建物は地 域特有の材料や構法を用いて建てられており、既存の耐 震性評価手法を用いる場合、その詳細まで反映できてい ないことが懸念されている。

地域的多様性を持つ土壁の地震時挙動に関する実験 的・解析的研究に関しては多く行われているが、それらは 全壁を対象としたものが多い。小田付の土蔵の概ねは極 めて厚い大壁を有するが、大壁の力学特性に関する研究 は、実験での取り扱いが難しいため事例は多くない。一方、 過去の地震における倒壊事例より、大壁は、平時にはその 重量により地震に不利な構造物であるが、大変形領域で は土壁が剥落し、重量が大幅に軽減されることで、倒壊に は至らないと推察されている。

以上を踏まえ、本プロジェクトでは、大壁仕様の土壁の 地震時挙動を剥落も含めて適切に評価する手法の構築を 目指し、喜多方市小田付の土蔵を対象として一連の研究 活動を遂行している。本報では、小田付付近に現存する土 蔵 N 邸を対象として、解体しながら具体的にデータを収 集する試みの一部を詳述する。まず、解体前に、構造的特 徴を把握するための実測や常時微動計測を実施し、耐震 診断を行う。次に、解体しながら大壁から要素壁試験体を 切り出し、せん断性能を確認するための対角圧縮試験、お よび、躯体から切り出した木材試験片の曲げ試験を実施

準会員 〇	千野詠子 *1]]	藤井文雲 *1
正会員	扇野智弘 *2]]	舩津寛子*2
]]	多幾山法子 *3		

し、各々の材料特性を把握する。

2. N 邸における構造調査

2.1 調査概要

喜多方市の土蔵造建造物 N 邸において、2020 年 9 月 28 日に構造調査を行った。図1にN 邸の外観写真を示す。

主な調査項目は以下の通りである。

(a) 耐震性検討のための建物の実測と構造的特徴の把握

- (b) 腐朽と蟻害の確認と柱傾斜などの状態把握
- (c) 表層地盤と建物の常時微動計測

2.2 建物概要

N 邸は築約 150 年の 2 階建の土蔵造の木造建物で、用 途は1・2 階共に倉庫であった。解体は 2020 年 10 月に行 われた。腐朽による土壁が剥がれ、柱部材の蟻害が確認で きた。主な材種は福島県産のスギで、土台・小舞部材はク リである。土壁には福島県産の土や再利用した壁土が用 いられている。

2.3 実測·状態把握

N 邸の平・断面図を図 2,3 に示す。床面積は 1・2 階共 に 26.331m²、柱本数は 1 階が 32 本、2 階が 26 本であっ た。柱径は大黒柱が 160mm、標準柱が 120mm であった。 主な耐震要素は土壁や貫、差鴨居である。柱傾斜の最大は 梁間方向が東に 0.007rad、桁行方向が南に 0.129rad、平均 は梁間方向が東に 0.006rad、桁行方向が南に 0.016rad で あった。柱含水率の最大は 24.8%、平均が 18.5%であった。 また、地元大工からの聞き取りから、南面の壁の損傷の程 度が大きいことがわかった。

2.4 常時微動計測

常時微動計測におけるセンサー配置を図 4 に示す。計 測時間は 500 秒間とし、自由地盤上と建物内にセンサー を配置した。自由地盤の計測では、1 階床下を選択し、水 平 2 成分、鉛直 1 成分のセンサーを用いた。建物の計測 では、2 階床梁上と小屋梁上、および、自由地盤上の計測 点において、水平 2 成分の多点同時計測を実施した。建 物内計測点のフーリエスペクトルを地盤の値で除したも のをフーリエスペクトル比とし、図 5 に示す。梁間方向 の固有振動数は 3.2Hz、5.2Hz、桁行方向の固有振動数は

Eiko CHINO, Bun FUJII, Tomohiro OGINO, Hiroko FUNATSU and Noriko TAKIYAMA

(i)1 次振動モード(3.2Hz)

(ii)2 次振動(5.2Hz)

3.3Hz、4.7Hz であった。これらの値を小さい順に1次、2 次固有振動数とし、振動モード形状を図6,7 に示す。梁間 方向の1次を見ると、開口の多い入口側(北側)の振幅が 大きくなっていることがわかる。桁行方向の1次を見る と、2.3節で述べた通り、損傷の大きい南面側の振幅が大 きいことがわかる。

2.5 耐震性評価

耐震性を検討する指標として、実測情報に基づき、限界 耐力計算に基づいて算出したベースシア係数の推移を図 8 に、縮約1質点応答値を図9に示す。喜多方市は多雪地 域であることを考慮し、重量計算において1mの積雪を想

	初時目	1次	3.2		
田右乍動粉(II_)	采间	2 次	5.2		
回有派動致(HZ)	桁行	1次	3.3		
		2 次	4.7		
	梁間 1次 3.2 2次 5.2 桁行 1次 3.3 2次 4.7 夏季 梁間 0.24 寮季 梁間 0.20 冬季 梁間 0.20 春柿行 0.47 9 夏季 孫間 0.20 春柿行 0.47 9 夏季 稀地震時 梁間 0.17 夏季 稀地震時 梁間 0.17 慶季 稀地震時 梁間 0.17 愛求間 6 桁行 0.17 梁電間 0.10 10 10 夏季 孫忠熊時 梁間 0.10 夏季 孫忠熊時 梁間 0.10 夏季 孫忠熊時 梁間 0.10 夏季 孫忠熊時 梁間 0.10 夏季 孫忠熊時 梁正間 0.10 夏季 孫忠熊時 梁正 10	梁間	0.24		
欧山 ションマび粉		0.59			
降伏ヘースンプ係数	冬季	梁間	0.20		
		桁行	0.47		
	2次 2次 1次 2次 桁行 2次 夏季 旅行 冬季 旅行 夏季 旅行 夏季 旅行 夏季 旅行 夏季 旅行 夏季 極稀地震時 梁 橋地震時 梁 極稀地震時 梁 極稀地震時 梁 極稀地震時 梁 極稀地震時 梁	梁間	0.006		
	百夭	稀地震時	梁間 桁行	0.006	
	夏季	稀地震時	梁間 桁行 梁間	0.006 0.003 倒壊	
古你杰亚 是()	夏季	稀地震時 極稀地震時	梁間 桁行 梁間 桁行	0.006 0.003 倒壊 0.0208	
応答変形角(rad)	夏季	稀地震時 極稀地震時	梁間 桁行 梁間 桁7 間 桁 間	0.006 0.003 倒壊 0.0208 0.0083	
応答変形角(rad)	夏季	稀地震時 極稀地震時 稀地震時	梁桁梁桁梁桁 梁桁	0.006 0.003 倒壊 0.0208 0.0083 0.003	
応答変形角(rad)	夏季	稀地震時 極稀地震時 稀地震時	梁桁梁桁梁桁梁桁梁	0.006 0.003 倒壊 0.0208 0.0083 0.003 倒壊	

表1 計測値および評価値のまとめ

建物外側 (大壁)

図 10 N 邸の平均的な壁断面模式図

(a) 内壁面 (真壁) (c) 外壁面(大壁) (b)断面 図 11 試験体

定した積雪荷重を考慮した冬季と、積雪荷重非考慮の夏 季の2通りの比較検討を行った(表1)。夏季の降伏ベー スシア係数は桁行方向が 0.59、梁間方向が 0.24、冬季は 桁行方向が 0.47、梁間方向が 0.20 であった。縮約1 質点 系応答値より稀地震時は夏季・冬季ともに安全側にある が、極稀地震時には夏季・冬季ともに梁間方向が倒壊する。

(a)断面の剥離

(b)外壁面の剥離 (c)内壁面の剥離 図 13 壁試験体 N3 の破壊の様子

3. 壁試験体の対角圧縮試験

前章の調査後に N 邸の解体が行われたが、その際に壁 の一部の切り出し、対角圧縮試験を行う。

3.1 試験体

N 邸の平均的な壁断面模式図を図 10 に示す。建物内側 は真壁、外側は大壁となっている。壁全体の厚さは 200mm 程度であった。貫や木舞の材種や寸法は図中に示す。

試験体を図11に示す。壁側面4面から躯体(貫・柱) を避けて 500mm 角で土壁を切り出す。外壁面は砂壁仕上 げで傷はほとんど見られず、内壁面は土の仕上げでひび 割れが多く脆かった。断面は外側壁、木舞、内側壁、外壁 の3層に分かれて見えた。建物北面から6体、東面から 6体、西面から6体、南面から5体を切り出すことができ たが、本報では北面5体(N1~N4,N6)の結果を述べる。

3.2 試験方法

加力システムと変位計測位置を図 12 に示す。試験体を 45 度傾斜させてアムスラー型万能試験機に設置し、対角 荷重 P を加える。切断面 4 辺には石膏を塗り、外枠とし てベニヤ板を当てて崩れを防止する。上下に加力治具を 設置し、紙面下向きに圧縮力を加える。圧縮荷重は、治具 とクロスヘッドの間に挟んだロードセルで計測する。変 位は、試験体の上下水平対角の変位を、外枠および土壁に 直接設置したワイヤー変位計で測定した。加力は、試験体 の初期上下対角長さに対する上下対角変位を変形率とし て制御する。

3.3 試験結果

1) 破壊性状

破壊後の試験体を図13に示す。全試験体で小舞が捩れ たことに起因して、外壁側の層の剥離、内壁側の層の剥離 が順に進行した。内壁面は変形率4%あたりから、外壁面 は変形率約 6%から小舞から剥がれ始めた。内壁面は 13 ~15%で、外壁面は 16%を超えて完全に剥離した。外壁 面・内壁面に水平方向のひび割れが生じた。

2) 復元力特性

荷重-変形率、層間変形角の関係を図14に示す。なお、 層間変形角とは、試験体の変形を架構に換算した場合の 値とする。外壁側、内壁側の順に剥離したことから、せん

(e)NO 図 14 荷重一変形率・層間変形角関係

断抵抗をする壁厚が破壊の進展に応じて変化したと考え られる。最大せん断応力は 3.5~4.5N/mm²程度で変形率 6 ~10%(層間変形角換算で考えると、〇~〇rad 程度)で 生じる外壁面の剥離に起因すると考えられる。最大荷重 到達後に荷重が低下するが、再度耐力が回復する場合は、 内壁面と小舞の層による抵抗力、もしくは、小舞の層のみ による抵抗力によると考えられる。

4. 躯体から採取した木材の材料特性値

解体時の壁切り出しと同時に、躯体の木部材を採取し、 その古材から切り出した試験片の曲げ試験を行う。

4.1 古材の採取と試験片の切り出し

採取した古材は、小屋裏の梁(梁 1,2) と桁(桁 1,2)、 1 階柱(柱 1)、2 階柱(柱 2)、および、土台(土台 1,2) の8部材である(表 2)。材種は梁・桁・柱はスギ、土台 はクリで、大工へのヒアリングから、福島県産と推定され る。部材は建築当時のもので桁 2 には蟻害が見られた。 含水率は 20~25%程度が平均的であったが、30%に近い 部材も見られた。

これらの古材から試験片を計32本切り出した。

4.2 試験·計測方法

JIS***に準じて4点曲げ試験を行う。横臥した試験片の 上下面中央にひずみゲージを貼り付け、荷重とひずみの 計測値より、曲げ強度及び曲げヤング係数を推定する。試 験前に寸法と質量の計測を行い、密度を求める。

4.3 試験結果

試験結果を表2に示す。スギについては、曲げ強度が6~9N/mm²程度で、ヤング係数が11~15kN/mm²であった。 蟻害が確認された桁2はヤング係数が低く、含水率も高い。クリについては、曲げ強度が9N/mm²程度で、ヤング 係数に差があった。土台1は土台2より含水率が高く、 ヤング係数が低い。

5. まとめ

本報では、喜多方市の伝統的な土蔵造建造物 N 邸を対 象として、建物の構造調査を実施し、切り出した壁要素に 対する対角圧縮試験、および、古材の曲げ試験を行い、土 蔵の耐震性の把握、大壁の破壊モードやせん断強度、およ び、木材の材料特性を把握した。

今後は、北面以外の壁要素試験体の対角圧縮試験を実施し、損傷とせん断強度の関係を調べる。 謝辞

本研究では、喜多方市役所の皆様、福島県建築士会喜多方支部・ 加藤俊哉氏、ならびに、株式会社庚塚公務所・庚塚俊恵氏より、多 大なご協力を頂いた。また調査と実験の遂行にあたり東京都立大学 の大学院生・学部生にご助力を頂いた。ここに記して謝意を表す。 参考文献

- 文化庁:伝統建造物群保存地区 https://www.bunka.go.jp/seisaku/bunkazai/shokai/hozonchiku /、(2020年12月1日参照)
- 2)木造軸組構法建物の耐震設計マニュアル編集委員会:伝統構法を 生かす木造耐震設計マニュアル-限界耐力計算による耐震設計・ 耐震補強設計法、学芸出版社、2004.3
- 3) 宇山史恩、陳昕岩、川島康生、多幾山法子: 喜多方市小田付の伝 統的な土蔵造建造物における構造調査と耐震性評価、日本建築学 会関東支部研究報告集、2020.3
- 4) 小池奨、:静的加力実験に基づく硬質ウレタンフォームを充填した木造平面壁の力学特性の解明
- 5) 諏訪愛、大楠海加、角崎康太、田才晃、高島健史、中村亮太:ALC ブロックを用いた組積体の材料特性と組積壁の面内せん断性状 に関する実験的研究 その 2:プリズム圧縮試験及びプリズムせ ん断試験

部材名	梁1	梁 2	桁1	桁 2	柱1	柱 2	土台 1	土台 2	
密度 (×10³kg/m³)	0.437603	0.521823	0.431664	0.485793	0.509721	0.421531	0.656815	0.525924	
曲げ強度 (×10 ³ N/mm ²)	0.08689	0.090288	0.069769	0.078163	0.082927	0.064208	0.089813	0.087827	
ヤング係数 (×10³N/mm²)	11.76593	15.10545	14.79111	9.112187	11.29174	12.51566	11.45716	15.19966	
搬入時の含水率 (%)	20.4	25.2	20.9	28.5	21.2	24.2	34	14	
材種			ス	ギ			ク	IJ	

表 2 古材より切り出した木材試験片の曲げ試験結果

*1 東京都立大学 都市環境学部 建築都市コース・学部生

*2 東京都立大学 大学院都市環境科学研究科 建築学域・博士前期課程

*3 東京都立大学 大学院都市環境科学研究科 建築学域・准教授・博士(工学)

*1 Undergraduate, Dep. of Architecture, Tokyo Metropolitan Univ.

*2 Graduate Student, Dep. of Architecture and Building Eng., Tokyo Metropolitan Univ.

*3 Assoc. Prof, Dep. of Architecture and Building Eng., Tokyo Metropolitan Univ., Dr.Eng.